
Determining the viscosity of water using the Hagen-Poisseuille relation

A. Renn (and L. Richardson-Foulger, D. Quirk, P. Kerner)
L2 Laboratory Skills and Electronics, Lab Group PH228, Tuesday

Submitted: December 5, 2019, Date of Experiment: November 5, November 12, 2019

This report uses the Hagen-Poiseuille relation to determine the viscosity of water using a method involving
water flow from a reservoir through a capillary tube. The final viscosity determined is 0.93 ± 0.05 mPa s, which
is two standard deviations from the literature value. This proves the method a valid method of viscometry.

1. INTRODUCTION

It is useful in physics to have a robust method of measuring
material properties in order to use them to further develop
theories, in this case viscosity is useful in medicine or oil
drilling for example. In this report we will be asking the
question ‘is the Hagen-Poiseuille relation a good way to de-
termine the viscosity of water?’.

In 1838, Poiseuille discovered that for a liquid of viscosity
η in laminar flow, the flow rate through a tube of radius a
and length L, where L� a, is given by,
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where dV
dt is the volume of the water V passing a point per

unit time t, and ρgh is the pressure difference at two ends of
a tube, ρ being the liquid’s density, g local gravity, and h the
height of liquid from one end of the tube (this is Bernoulli’s
relation for pressure as a function of depth[2]).

By use of an experiment which allows the altering of h and
distinct measurements of dV

dt for each h, one can plot these
variables and determine a relation between the liquid vis-
cosity η and gradient m as follows:
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In this report we will use literature values of 9.81 m s−2

for g, and 997 kg m−3 for ρ[2]. We will use the following
equation for the literature value for η for water, measuring
a lab temperature of T ,

η = A exp

(
B

T
+ CT +DT 2

)
, (3)

where A = 1.856 × 10−11 mPa s, B = 4209 K,
C = 0.04527 K−1, and D = -3.376 × 10−5 K−2 [3].

2. METHODS

As seen in Figure 1, a capillary tube was attached to the
bottom of a reservoir of tap-water at a consistent temper-
ature, which was in turn suspended above a beaker on a
mass balance. The data logger attached to the mass balance
recorded the mass of water measured over a time period of
300 2and 120 s for the white and blue tube respectively.
This was chosen as in this range, the height of water in the
water bath stayed relatively constant (change of x in time
t), which is required for our assumption of a linear relation
between height and flow rate. The flow rate was then cal-
culated using chi-squared analysis for each height, and then

the gradient of the graph of flow rate against height was de-
termined again by chi squared analysis to determine a value
of m (see Introduction) with which the viscosity of water
could be determined.

The length of each capillary tube was measured with a ruler,
whereas the diameter of each tube was measured at 8 dif-
ferent angles to the observer using a travelling microscope
and a weighted mean of these measurements was calculated.
This was necessary because the radius has a fourth power in
the Hagen-Poisseuille relation, meaning the error in the ra-
dius has a large impact on the error on the final result.

The height of the surface of the water from the bottom of
the reservoir was determined using a ruler submerged in the
water bath as close to the capillary tube hole as possible,
as to minimise parallax error. Then, the height of the cap-
illary tube from the bottom of the water was measured and
subtracted from the height of the surface to determine the
height of the surface from the capillary tube.

FIG. 1: A diagram of the experimental setup.

3. RESULTS

Figure 4 was created by determining the gradients of each
of the lines on figures 2 and 3, using χ2-minimisation, and
plotting them as a function of height.

From figure 4, a gradient for each line was found using χ2-
minimisation. Equation (2) was used to determine a value
for water viscosity, using also the measured diameters, both
of which are values can be found in table 1. The values
and associated errors were deemed similar enough to be
combined into a final value for the viscosity of water of
0.93 ± 0.05 mPa s.

The measured temperature of the water was 18.4 ± 0.1 oC,
which, using equation (3), results in a literature value of
η = 1.040 ± 0.003 mPa s. This is also shown in table 1.

1



A. Renn Determining the viscosity of water using the Hagen-Poisseuille relation

Capillary tube Diameter (mm) Measured viscosity (mPa s)

White 0.58 ± 0.01 0.93 ± 0.06

Blue 0.359 ± 0.007 1.00 ± 0.08

Combined - 0.97 ± 0.05

Lab value - 1.057 ± 0.003

TABLE I: Values of viscosity and their associated uncertainties
obtained from the tubes listed. The methods used to calculate the

uncertainties are described in Appendix I.

FIG. 2: A graph of mass against time for the system using the
white capillary tube. Note the oddly shaped residual plot.

FIG. 3: A graph of mass against time for the system using the
blue capillary tube. Note the periodic residual plot.

4. DISCUSSION

The 89 cm curve in figure 2 shows a residual shape which
differs from all other heights. This is presumed to be
because the experiment was tampered with while data-
collection was happening. Therefore, this gradient was re-
moved from figure 4.

The other residuals in figure 2 show a quadratic trend. This
may be because height was assumed to be constant, but the
time period over which measurements were made meant
that substantial water drained out. It was calculated that
over 1 minute, 0.4 mm was lost from the height of the water
using the white tube, so over the time of 5 minutes in figure
2, 2 mm will have been lost. It was assumed this would be
negligible, but clearly this was not the case. One can see that

FIG. 4: A comparison of flow rate vs height for both tubes, from
which an estimate of the gradient, and thus viscosity, can be

made.

for higher flow rates, this has more of an effect as the resid-
ual trend is a steeper curve. This non-linearity of the curves
may have lead to the value of η for the white tube to be
wrongly estimated. However the same cannot be observed
for the blue tube as less water escaped due to the smaller
diameter, and because it was over a shorter timescale of 2
minutes. Thus, the value of η from the blue tube may be
more accurate.

The linear fit in figure 4 looks to be adequate, but the ver-
tical errors are very small. We believe this to be due to the
number of data points per line being very large, resulting
in a very small error for the gradient, when it was not the
case. Therefore, horizontal error bars were included in the
line-fitting. Using the gradient from this fit and calculating
values of viscosity, the combined measured value is within
two standard errors of the accepted value, which is reason-
able agreement, therefore we find good reason to say that
the method was valid.

5. CONCLUSIONS

The viscosity of water was determined using two different
capillary tubes. Both tubes’ returned values of viscosity
were combined and the final value was 0.97 ± 0.05 mPa s,
which was within two standard errors of the accepted value.
This shows that using the Hagen-Poiseuille relation and
capillary tubes is a valid method of viscometry.

If done again, the experiment would take more care in keep-
ing the height constant and use a broader range of capillary
tubes.
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Appendix A: Errors Appendix

1. Measurement Uncertainties

The standard errors on measurements with a ruler was taken
to be half an analogue division of the measuring device
used. Whenever distances were combined, such as when
the length of the capillary tubes was measured or when
the depth of the water from the hole in the reservoir was
measured, the errors were combined in quadrature in accor-
dance with the equation,

αd =
√
α2
d1

+ α2
d2
, (A1)

where αd1
and αd2

are the uncertainties on the distance
measurements d1 and d2, respectively, and αd is the fi-
nal uncertainty on the final distance measurement d. [This
equation, like all of the equations included in Appendix A,
is based on the error analysis formula given in I. G. Hughes
and T. P. A. Hase, Measurements and Their Uncertainties,
Oxford University Press: Oxford (2010).]

The diameter of the capillary tubes was measured by plac-
ing a travelling microscope target on each side of the circu-
lar hole, then repeating this at different angles. These diam-
eters were combined by calculating the mean and standard
error of the individual measurements. The mean is calcu-
lated using the equation,

B̄ =
1

N

N∑
i=1

Bi, (A2)

where B̄ is the mean measurement of B and Bi are individ-
ual measurements of the magnetic field density B.

The sample standard deviation, σsample, of the set of mea-
surements is worked out using the equation,

σsample =

√√√√ 1

N − 1

N∑
i=1

d2i , (A3)

where di = B̄−Bi. The uncertainty in the measurement of
B̄ is taken to be its standard error, αB , where

αB =
σsample√

N
. (A4)

2. χ2-Minimisation for Parameter Fitting

The χ2 statistic for a fit of y against x of y(x) is,

χ2 =
∑
i

(yi − y(xi))
2

α2
i

, (A5)

where y(xi) is the measurement of y at xi, yi is the corre-
sponding value from the fit (linear in this case), and αi is the
standard error on the ith data point. In this experiment, this
statistic is minimised using computer software to determine
a best-fit for the data points. An error on this fit is deter-
mined by the extremum of the χ2 + 1 contour on a contour
plot of χ2 with the fit parameters used.

3. Combining Values - The Weighted Mean

As seen in the report, the calculated viscosities for both cap-
illary tubes are combined using the weighted mean. In the
case where two values are combined, the weighted mean x
of x1 and x2, with errors of α1 and α2 respectively, is,

x =
α−2
1 x1 + α−2

2 x2

α−2
1 + α−2

2

. (A6)

Then, the combined error α is given by,
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